Apoptosis and growth inhibition in malignant lymphocytes after treatment with arsenic trioxide at clinically achievable concentrations.
نویسندگان
چکیده
BACKGROUND Arsenic trioxide (As2O3) can induce clinical remission in patients with acute promyelocytic leukemia via induction of differentiation and programmed cell death (apoptosis). We investigated the effects of As2O3 on a panel of malignant lymphocytes to determine whether growth-inhibitory and apoptotic effects of As2O3 can be observed in these cells at clinically achievable concentrations. METHODS Eight malignant lymphocytic cell lines and primary cultures of lymphocytic leukemia and lymphoma cells were treated with As2O3, with or without dithiothreitol (DTT) or buthionine sulfoximine (BSO) (an inhibitor of glutathione synthesis). Apoptosis was assessed by cell morphology, flow cytometry, annexin V protein level, and terminal deoxynucleotidyl transferase labeling of DNA fragments. Cellular proliferation was determined by 5-bromo-2'-deoxyuridine incorporation into DNA and flow cytometry and by use of a mitotic arrest assay. Mitochondrial transmembrane potential (delta psi(m)) was measured by means of rhodamine 123 staining and flow cytometry. Protein expression was assessed by western blot analysis or immunofluorescence. RESULTS Therapeutic concentrations of As2O3 (1-2 microM) had dual effects on malignant lymphocytes: 1) inhibition of growth through adenosine triphosphate (ATP) depletion and prolongation of cell cycle time and 2) induction of apoptosis. As2O3-induced apoptosis was preceded by delta psi(m) collapse. DTT antagonized and BSO enhanced As2O3-induced ATP depletion, delta psi(m) collapse, and apoptosis. Caspase-3 activation, usually resulting from delta psi(m) collapse, was not always associated with As2O3-induced apoptosis. As2O3 induced PML (promyelocytic leukemia) protein degradation but did not modulate expression of cell cycle-related proteins, including c-myc, retinoblastoma protein, cyclin-dependent kinase 4, cyclin D1, and p53, or expression of differentiation-related antigens. CONCLUSIONS Substantial growth inhibition and apoptosis without evidence of differentiation were induced in most malignant lymphocytic cells treated with 1-2 microM As2O3. As2O3 may prove useful in the treatment of malignant lymphoproliferative disorders.
منابع مشابه
Tumor growth inhibition by arsenic trioxide (As2O3) in the orthotopic metastasis model of androgen-independent prostate cancer.
Arsenic trioxide (As2O3) induces clinical remission of patients with acute promyelocytic leukemia. As a novel anticancer agent for treatment of solid cancers, As2O3 is promising, but no in vivo experimental investigations of its efficacy on solid cancers have been done at clinically obtained concentrations. In addition, the cell death mechanism of As2O3 has yet to be clarified, especially in so...
متن کاملRe: Apoptosis and growth inhibition in malignant lymphocytes after treatment with arsenic trioxide at clinically achievable concentrations.
Zhu et al. (1) indicated that “As2O3 may prove useful in the treatment of malignant lymphoproliferative disorders” in general, and Kroemer and de Thé (2) concluded with the statement that “irrespective of the molecular details, it appears that arsenic constitutes a welcome addition to the clinician’s armamentarium for the chemotherapy of leukemia.” Their major theme centers on the mechanism of ...
متن کاملArsenic trioxide induces apoptosis via the mitochondrial pathway by upregulating the expression of Bax and Bim in human B cells.
Arsenic trioxide (As2O3) has been approved for the treatment of acute promyelocytic leukemia (APML) and it is a promising candidate for the treatment of patients with lymphoproliferative disorders, such as relapsed or refractory multiple myeloma and myelodysplastic syndromes. The effects of As2O3 on B cells, specifically which do not express Bcl-2, have not been studied. In this study, we have ...
متن کاملJNK activation is a mediator of arsenic trioxide-induced apoptosis in acute promyelocytic leukemia cells.
Arsenic trioxide induces c-jun N-terminal kinase (JNK) activation and apoptosis in acute promyelocytic leukemia (APL), where it has major clinical activity, but whether JNK is necessary to induce apoptosis is unknown. To clarify this necessity, we established 2 arsenic trioxide (As(2)O(3))-resistant subclones of the APL cell line, NB4. Both resistant lines showed little activation of JNK1 follo...
متن کاملJNK ACTIVATION IS A MEDIATOR OF ARSENIC TRIOXIDE-INDUCED APOPTOSIS IN ACUTE PROMYELOCYTIC LEUKEMIA CELLS Short title: JNK mediates arsenic-induced apoptosis in APL
Arsenic trioxide induces JNK activation and apoptosis in APL, where it has major clinical activity, but whether JNK is necessary to induce apoptosis is unknown. To clarify this, we established two As2O3-resistant subclones of the APL cell line, NB4. Both resistant lines showed little activation of JNK1 following treatment with As2O3, even at doses sufficient to elicit robust activation in NB4 c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the National Cancer Institute
دوره 91 9 شماره
صفحات -
تاریخ انتشار 1999